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Abstract--A study of the compatibility of strains and rotations is necessary for a proper understanding of 
deformation patterns. Principles of compatibility also underlie all methods for removing the effects of deformation 
and finding the pretectonic shape of deformed regions. The object of this paper is to derive compatibility equations in 
a direct way and in a simple form which can be interpreted geometrically. This is done using sets of orthogonal 
curvilinear coordinates parallel to strain trajectories. As a result, all shear components vanish and only principal 
strains appear in the equations. Such advantages are obtained at the expense of the extra complexity of curvilinear 
coordinates compared with Cartesian ones. Orthogonal curvilinear coordinates are described firs4 with particular 
reference to curvature. Compatibility of strains and rotations is then discussed by comparing curvatures of 
trajectories in the undeformed and deformed states. Results are compared with previous theoretical work and 
numerical methods. 

INTRODUCTION 

As GEOLOGISTS have obtained more and more strain data 
from orogenic regions, they have become interested in 
methods of geometrically removing the strain so as to 
discover original pretectonic configurations and evaluate 
tectonic displacements. The problem is essentially a 
geometric one, but it can be complex if deformation is 
variable in space, as it generally is in nature. Some 
progress in finding practical methods of strain removal 
has been made by geologists (Oertel 1974, Cobbold 1977, 
Schwerdtner 1977, Oertel & Ernst 1978, Hossack 1978, 
Cobbold 1979), but the basic theory, as reviewed by 
Truesdell & Toupin (1960), has not been systematically 
explored with this object in mind. 

The geologist's problem can be stated as follows. The 
deformation of an infinitesimal element of rock can be 
expressed in terms of three components: a rigid trans- 
lation, a rigid rotation, and a strain or shape change. The 
first two of these do not modify the shape or internal 
structure of the element of rock: unless the geologist 
knows its original position and orientation, which he 
seldom does, he cannot determine components of trans- 
lation and rotation in a direct way. In contrast, the strain 
causes changes in shape and internal structure which are 
usually recognizable and can often be measured. Thus the 
problem is to reverse a deformation given strain data only. 
Truesdell & Toupin (1960, p. 271) note that this problem 
is soluble provided the strains satisfy various conditions 
of compatibility. This means that certain components 
cannot vary in space independently of others. 

As examples of the idea of compatibility, Cobbold 
(1977) and Schwerdtner (1977) have shown how vari- 
ations in strain are necessarily accompanied by vari- 
ations in rigid body rotation. This is now the basis for 
certain numerical methods of strain removal (Sch- 
werdtner 1977, Cobbold 1979). Using Cartesian coor- 
dinates and working in two dimensions, Cobbold (1977) 

has derived expressions giving rotation gradients in terms 
of strain and strain gradients. Unfortunately these ex- 
pressions are complex enough for their geometric mean- 
ing to be hidden and they are cumbersome to use. This 
complexity increases for three-dimensional deformations. 
Thus there is a need for simpler expressions whose 
meaning can be grasped. The object of this paper is to 
derive such expressions. 

As hinted earlier (Cobbold 1979), considerable simplifi- 
cation can be obtained by using special systems of 
orthogonal curvilinear coordinates which are parallel at 
all points to the principal directions of the strain ellipsoid. 
In terms of these coordinates, (a) shear components of the 
deformation tensor vanish, and (b) normal components 
are proper numbers. Thus we only need to deal with 
principal strain values. These advantages are somewhat 
but not completely offset by the need to describe the 
curvature and local scale factors for the curvilinear 
coordinates. Orthogonal curvilinear coordinates are basi- 
cally simple to use but are perhaps not familiar to some 
geologists. Hence this paper starts by describing some 
simple properties of these coordinates, including con- 
ditions of compatibility that will then be applied to strains 
and rotations. The analysis here is two-dimensional, but 
an extension to three dimensions is more simple than it is 
with Cartesian coordinates. As far as possible, the no- 
tation and terminology used here are those ofTruesdell & 
Toupin (1960). 

ORTHOGONAL CURVILINEAR COORDINATES 

Orthogonal curvilinear coordinates were introduced 
and studied extensively by Lam~ (1859). They found 
immediate applications, such as to the theory of elasticity 
(Love 1892-). A very good introduction is provided by 
Borg (1963, Chapter 3). The original theory of Lam~ is 
sufficient for the present discussion, but the more preva- 
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1. Orthogonal curvilinear coordinates (xl, x2) referred to a 
Cartesian frame (zt, z2). 

quantities h I and h2 are simply scale factors: they give the 
true (Cartesian) lengths of the sides of the element of the 
curvilinear coordinate system. As the interval between 
any two adjacent coordinate lines varies, so does hi and 
h2. The reciprocals of h 1 and h2 are called magnification 
factors by Borg (1963). The squares of h I and h2, denoted 
O~ and 025 are elements of the metric tensor, gq. For 
oblique curvihnear coordinates, the metric tensor is the 
most convenient measure in terms of Cartesian coor- 
dinates. For the orthogonal coordinates used here, ex- 
pressions are more simply written in terms of h I and h 2. 

The second matrix [on the rhs of (3)] is an orthogonal 
matrix. It expresses a rotation of the coordinate lines 
through an angle ~t. If this angle is zero, (2) becomes 
equivalent to dz 1 = hi d X l  and d z  2 = h 2 d x  2. 

lent tensor notation, as used by Truesdell & Toupin 
(1960) will also be referred to in passing. 

Consider a system of Cartesian coordinates (Fig. 1) and 
a point P (z 1, z2). Suppose we choose two functions ofz  1 
and z 2 as follows: 

Xl = f l  (21'22)' (1) 
X2 - - f 2  (Z1, Z2)" 

We assume that these functions and their inverse are 
single-valued and as many times differentiable as re- 
quired. They will have constant values (for example, x 1 
= a) along two families of curves which we may choose as 
curvilinear coordinates. Thus the position of P is also 
given by P(xl, x2). Equation (1) is a coordinate transfor- 
mation: it describes how zx, z2 transform to become Xl, 
x2. Notice that this in no way implies a deformation of the 
material, but merely a change in the way of describing it. 

From the inverse of (1), using the chain rule of 
differentiation, we obtain: 

L dz2] LOXI ~X2] L~xd 
(2) 

So far, the functions (1) have not been chosen in any 
special way that will guarantee the curvilinear coor- 
dinates to be orthogonal. There are several ways of 
explaining how the choice is made. Here we will use a non- 
rigorous but graphical argument. We require (2) to 
describe how a small non-Cartesian element, e (Fig. 1), is 
transformed into an equivalent Cartesian element. 

Since both elements each have orthogonal sides, the 
transformation involves only two changes : first, a change 
in the lengths of the sides; second, a change in orientation. 
Thus the matrix in (2) is expressed as the product of two 
other matrices: 

 AI:I --sing 1 
xl Ox2[ = . (3) 

Oz21 [sin ~t cos 
/ 

xl dx d 

The first matrix (on the right) is a diagonal one. The 

COMPATIBILITY AND CURVATURE 

It is perhaps intuitively apparent that in order to 
maintain coordinates orthogonal at all points, the quan- 
tities h~, h 2 and • cannot vary independently in space. 
They must be compatible. Compatibility equations can be 
derived in the following way. 

In (2), the components of the matrix are not all 
independent; by definition, they must satisfy the following 
conditions: 

o 

~x 2 \~x~,] = ~x: \ Ox2,] (4) 

Ox~tOx,/ Oxltex~/ 
If we multiply out the two matrices on the rhs of (3) and 
apply the conditions (4), we obtain, after a little ordering: 

Oe 1 Oh I 

OX 1 h2 ~x 2' 

O~ 1 ~h 2 

0x2 hi dXx' 

(5) 

These first order partial differential equations are com- 
patibility equations for ~t in terms of h t and h 2. If we write 
ds t = h I dx I and ds 2 = h2 dx2 for the arc lengths of an 
infinitesimal element (Fig. 2), then (5) becomes: 

Oe 1 Oh 1 1 

~Sl hi Os2 ct rl '  

~ 1 Oh 2 1 

dS 2 h 2 OSl = C 2 r2 '  

(6) 

where c and r denote curvature and radius of curvature, 
respectively. The quantity &t/dst is the curvature of the 
xl-lines by definition. The quantity Ohl/Os 2 is the va- 
riation in spacing of x : l ines  with true distance along x 2. 
Divided by the reference length hi, this also gives the 
curvature. The expressions are analogous to those used in 
the theory of simple bending, but notice that in (6) it is the 
coordinate frame that is bent, not the material. Equation 
(6a) gives the curvature of the Xl-lines, (6b) that of the x2- 
lines. 
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Fig. 2. Element of curvilinear grid, showing relationship between 
curvature and grid spacing. Arc-length of curve EF is As t. Increase in 
arc-length from AB to DC is Ah 1 Axl. Divided by As2 this gives a 
gradient Ah I Axl/As 2. Divided again by the reference length As 1 = h 1 
Axt, this gives Aht/hl As2. In the limit as the element becomes small, this 

is the curvature, (l/hl)Ohl/t~s2 = 1/r I (see equation 6). 

In (5) the terms in 0t can be eliminated by differentiating 
the first equation with respect to x2, the second with 
respect to x 1 and equating. This yields: 

Ox~ e ~ /  + ~x~ exl/  o. (8) 

This second order partial differential equation ex- 
presses the compatibility of hi and h2. Any set of hi, h2 
must satisfy (8) if the coordinates are to be orthogonal. 
One geometrical interpretation is that the curvature of the 
two sets of coordinate curves cannot vary independently if 
they are to remain orthogonal. 

COMPATIBILITY EQUATIONS FOR 
DEFORMATION 

The results of the last section will now be used to discuss 
compatibility of rigid rotations and finite strains along 
strain trajectories. 

Consider two sets of orthogonal curvilinear coor- 
dinates, one parallel to strain trajectories in the deformed 
state, the other parallel to trajectories in the undeformed 
state (Fig. 3). Both sets are referred to a common 
Cartesian frame. Quantities in the deformed state will be 
described with minuscules, those in the undeformed state 
with majuscules. Thus equations (1)-(8) apply to the 
deformed state. If we write the same expressions with 
capital letters, then these will be applicable to the 
undeformed state. Thus the equivalent of (5) is : 

p P 

t~ 

Fig. 3. Common Cartesian frame and sets of orthogonal curvilinear 
coordinates parallel to strain trajectories in the undeformed state (X1, 

X2) and deformed state (x l, x2). 

tgA 1 6~H1 

6~XI H2 ~ X 2 '  (9) 

OA 1 t~H2 

3X2 H 1 tgXl" 

It has been argued before (Cobbold 1979) that the 
deformation transforms trajectories in the undeformed 
state into trajectories in the deformed state. The trajec- 
tories undergo changes in length (strain) and orientation 
(rigid rotation). At any point, the new length divided by 
the original length of a segment of trajectory is just the 
principal stretch in that direction, as assumed by Hossack 
(1978). Although it is not strictly necessary to do so, we 
will assume for convenience that the coordinate frame 
distorts with the material. This has two consequences. 
First, it means that x and X can be interchanged freely in 
all expressions. Second, the coordinate intervals H 1 and 
H 2 stretch to become the new intervals, h~ and h2, as  
follows : 

hi = 21 H1 ; h2 = )~2 H2. (10) 

Here 2 is the stretch (final length/original length) as 
defined by Truesdell & Toupin (1960, p. 255). The rigid 
body rotation 0 at any point is equal to the difference in 
orientation between corresponding trajectories in the 
undeformed and deformed states: 

0 = A - ~. (11) 

If this quantity varies in space (as it must if deformation is 
heterogeneous), then the curvature of the trajectories 
either increases or decreases on passing from one state to 
the other. Thus the trajectories undergo changes in length 
and curvature. Any kind of continuous deformation can 
be expressed in terms of these changes. 

From these considerations, it follows that gradients of 
rigid body rotation (giving changes of curvature) are 
related to gradients of stretch. This can be seen by 
substituting (10) into (9) and then using ( l l )  and (5): 

C30 22 ~(hl/)~l)  1 t3h 1 

~X1 h2 t~x2 h2 •x2' (12) 

t~0 21 6~(h2/22) 1 c~h 2 

~X2 hi c~xl hi ?xl" 
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Fig. 4. Simple bending of a beam. Coordinates in undeformed state (left) 
a r e  straight lines; those in deformed state (right) are plane polar. 

This completes the analysis of compatibility in two 
dimensions. 

AN EXAMPLE:  SIMPLE BENDING OF A BEAM 
OR FOLD 

The simplest example of a heterogeneous plane defor- 
mation is probably the bending of a beam or layer of 
material (Fig. 4). In the deformed state, the principal 
stretches are everywhere either parallel or normal to the 
layer boundaries. The strain trajectories are arcs and radii 
of circles, which we may conveniently describe by means 
of plane polar coordinates, r and ~,. If the origin of these is 
chosen to coincide with the origin of the common 
Cartesian frame, then the inverse of (1) becomes: 

Z! = rCOS0t, 

Z 2 = r sin at. 

Hence (2) becomes: 

( d z l ' ~ = ( c o s ~ - - r s i n ~  ( d r ) .  

dz2J \sin ct r cos ct/ d~t 

(13) 

remove the effects of deformation, either locally or 
regionally. 

The non-Cartesian equations are probably best used as 
follows. From a pattern of strain trajectories, values of hi 
and h2 are calculated at each point. These are multiplied 
(10) by the principal stretches to give H1 and H2. 
Graphical or numerical integration of (9) then gives the 
orientation of trajectories in the undeformed state. These 
can be constructed from the fields of l i t ,  H e and A. Shape 
changes can then be mapped from the deformed to the 
undeformed state or vice versa, using the trajectories as 
mapping coordinates (Cobbold 1979). 

Analytical procedures such as these suffer from a major 
drawback : the solution is uniquely obtainable only if the 
strain values are mutually compatible. For example, H~ 
and H2 must satisfy (8). There is no guarantee that they 
will do so if the strain data are subject to error, as 
generally they are in geological examples. Therefore what 
is required is a strain distribution that satisfies com- 
patibility conditions and also is a best-fit to the original 
strain data. So far, no practical analytical method has 
been found for doing this. 

The geologist faces another problem: although he may 
have enough data to construct reasonably accurate 
trajectories, values of principal stretch are usually obtain- 
able at only a limited number of points spaced at finite 
intervals. This suggests the use of numerical procedures 
based on finite differences or finite elements. Cobbold 
(1979) has suggested one such procedure in which any 
incompatibility between strain data can be overcome by 
allowing gaps and overlaps between adjacent finite ele- 
ments. Another possibility is to replace (9) and (8) by their 
finite difference analogues: this is being explored at the 
moment. 

(14) Acknowledgements--I am grateful to A. J. Watkinson and J. P. Brun for 
constructive criticism of the manuscript. 

By comparison with (3), we see that hi = 1 and h 2 = r. If 
we also choose r = 1 at the neutral surface of the beam 
(where by definition 2~ = 22 = 1), then in general, the 
amount of stretch increases with the radius of curvature, 
that is, 22 = r. From (10) we obtain H2 = 1 ; from (9), A = 
constant (which we may conveniently take as zero). 

This shows that in the undeformed state the strain 
trajectories are straight lines, as is perhaps obvious 
intuitively. From (12), we obtain 0 = - ~t, which means 
that the amount of rigid rotation equals the attitude of the 
layering in the deformed state, as is also obvious. 

DISCUSSION 

Equations (5), (9), (10) and (11) are more simple and 
easier to interpret than corresponding equations in 
Cartesian coordinates derived by Cobbold (1977). If true 
values of strain are known at all points in a deformed 
region, then either the non-Cartesian or the Cartesian 
equations can be used to calculate rigid rotations and so 
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